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A B S T R A C T  

A Poisson structure on a Lie group is called left invariant if the contra- 
variant 24ensor field ~ corresponding to the Poisson structure is left 
invariant. Explicit examples of such structures were known only for few 
cases, and in this paper, we give new examples of high rank left invariant 
Poisson structures for all non-compact classical real simple Lie groups. 
This result is equivalent to give constant solutions of the classical Yang- 
Baxter equation [r 12, r 13] + [r 12, r 23] + [r 13, r 23] = 0 taking values in the 
space A29 for these Lie groups. 

I n t r o d u c t i o n  

The  ma in  pu rpose  of this  pape r  is to  give new examples  of high r ank  left invar iant  

Poisson s t ruc tu res  on non-compac t  classical  real  s imple Lie groups.  

To s t a t e  our  results ,  we first expla in  some fundamen ta l  not ions  which we use 

in this  paper .  Let  M be  a different iable  manifold,  and  let Ca(M)  be the  set 

of C a - f u n c t i o n s  on M.  A Poisson s t ruc tu re  on M is a skew-symmet r ic  b i l inear  

m a p  { , } : C~ x C~176 --+ C~(M)  sat is fying the  following condi t ions :  

Jacob i  ru l e :  {{f ,  g}, h} + {{g, h}, f }  + {{h, f } ,  g} = 0, 

Leibniz  ru l e :  {f ,  gh} = {f, g}h + g{f, h} 

(f,g, h C Ca(M)) .  The  Poisson s t ruc ture  { , } defines a con t ravar ian t  2- tensor  

field u �9 F ( A 2 T M )  on M by 

(It, df A dg) = {f,  g}, 
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where ( , ) is the natural pairing. Conversely, a 2-tensor field 7r E F(A2TM) 

defines a bracket operation { , } by the above equality, and this { , } gives a 

Poisson structure on M if and only if 7r satisfies the equality [Tr, 7r]s = 0, where 

[, Is: F(A2TM) • F(A 2TM) -+ F(A3TM) is the Schouten bracket defined by 

[XAY, ZAW]s = [X, Z]AYAW+XA[Y, Z]AW-[X, W]AYAZ-XA[Y, W]AZ. 

In this sense, we may say that  Ir defines a Poisson structure on M if it satis- 

fies [Tr, 7r]s = 0. (For a general definition of the Schouten bracket and detailed 

explanation of Poisson manifolds, see [24] etc.) 

Now, in this paper, we mainly consider the case M is a Lie group G. In this 

case, we say that  a Poisson structure on G is left invariant if 7r is a left invariant 

2-tensor field, i.e., 7r belongs to the space A29 where g is the Lie algebra of G, 

consisting of left invariant vector fields. In this situation, the equation [Tr, 7r]s = 0 

is called the "classical Yang-Baxter equation", which we abbreviate the CYB- 

equation (cf. [24; p. 173]). Clearly, from the above fact, the solution of the 

CYB-equation naturally corresponds to the left invariant Poisson structures on 

G, and finding solutions of this equation is the main subject of this paper. 

Historically, the CYB-equation was first introduced by E. K. Sklyanin as the 

classical limit of the quantum YB-equation around in the 1980s, and reformulated 

in the form of the Schouten bracket by Gel'fand and Dorfman. Later, in the 

paper [2], Belavin and Drinfel'd classified the meromorphic solutions of the CYB- 

equation of the form 

[X12(u), X13(u ~-v)]-1-[X12(u), X23(v)]-[-[xi3(u-~-v), X23(v)] ~- 0 

under some generic assumption, where the function X (u) takes value in the tensor 

product g | 9 of a complex simple Lie algebra. (For the meaning of the above 

equation, see for example [2], [3].) The meromorphic solutions are extended to 

the whole complex plane and divided into three classes according as the rank 

of the lattice F consisting of the poles of X(u). They completely classified the 

solutions in the cases rank F = 2 and 1. But in the remaining case rank F -- 0, 

the classification was not done, and they only showed that X(u) is equivalent to 

a rational function, and constructed some special examples. The problem we are 

considering now is just contained in this rank F = 0 case. Precisely, the solution 

of the CYB-equat~ion in our sense coincides with the "constant" solution of the 

above equation 
[r12, ?,13] -Jr-[?.12, r23] _[_ [?,13,1.23] = 0 

where r takes a value in the subspace A2g C $ | 9, and 9 is a real simple Lie 

algebra. (In their terminology, the triangle equations for constants. See [3; 
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p. 96] and w (4).) For this constant case, they gave examples of solutions for 

g = zt(n, C) at the end of [2], but until now, solutions for other Lie algebras were 

not studied so well, as we will explain below. 

In general, the CYB-equation [Tr, rr]s = 0 admits several types of degenerate 

solutions including the trivial solution ~r = 0 which corresponds to the Poisson 

structure defined by {f, g} = 0. The simplest non-trivial example is the case of 

solutions with rank rr = 2, where rank ~r means the usual rank of a skew symmet- 

ric tensor of A25. And in this case, there is a natural one-to-one correspondence 

between the set of solutions with rank 7r = 2 and the set of 2-dimensional sub- 

algebras of $ (cf. Proposition 2). Hence, the complete classification of solutions 

of the CYB-equation including degenerate ones is almost "hopeless", as Belavin 

and Drinfel'd wrote in [2; p. 179]. Under these circumstances, as a first im- 

portant problem, it is necessary to find generic (= high rank) solutions of the 

CYB-equation, and if possible, to classify such high rank solutions under the 

action of the adjoint groups. 

Concerning this problem, we already know all solutions of the CYB-equation 

essentially for compact Lie groups (cf. Proposition 4), and from this result, it 

follows that  the rank of generic solutions rr (= max rank 7r) is equal to 211/2. rank 

G]. But for non-compact Lie groups, such an upper bound is not known yet in 

general, and it is the main purpose of this paper to present high rank solutions 

of the CYB-equation for all non-compact classical real simple Lie groups. As a 

by-product of this result, we can also construct a new class of Poisson-Lie group 

structures on G (cf. w (1)). Until now, such high rank examples of left invariant 

Poisson structures were known only for the groups SL(n, R), SL(n, C) and some 

other low dimensional (real or complex) Lie groups (cf. [2], [3], [6], [17], [19], [20], 

[21], [23], [25]). Our main results are summarized in the following theorem. 

THEOREM 1: Non-compact classical real simple Lie groups possess a left 

invariant Poisson structure lr with the following rank: 

SL(n, R): rankTr = n(n  - 1), 

SU*(2n)(n > 2): rankTr = 4n(n - 1), 

Sp(n, R): rankTr = n(n  + 1), 

SO*(2n)(n ___ 2,n # 4): rankTr = n ( n -  1), 

SU(p, q): rankzr ~ 2pq 
= [ 2pq + 2[(p - q - 1)/21 

(p = q ,q +  1 , q +  2), 
(p > q + 3 ) ,  
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SO(p,q)(p  >_ q >_ 1): rankTr = 

pq + 2[(p - q)/4] 
(p+  1)(q - 1) + 2[(3p - 3q - 1)/4] + c 
(p + 1)(q - 1) + 213(p - q)/4] + e 

where 
2 p = q + l , q + 2 ,  q + 4 ,  q + 5 ,  

c =  4 p = q = 3 ,  
0 otherwise, 

2p + 2p 
Sp(p, q) (p >_ q >_ 1): rank 7r = 2pq + p 

2pq + p - 1 

SL(n, C)R: ranklr = 2n(n - 1), 

O(2n + 1, C)R: rankTr = 2n(n + 1), 

Sp(n, C)R: rankTr = 2n(n + 1), 

2n (n = even), 
O(2n, C)R: rankTr= 2 ( n 2 - 1 )  ( n = o d d ,  nT~3) ,  

q = even), 
(p _> q + 1,p = even, q = odd), 
(p >_ q, p = odd, q = odd), 

SL(n ,  R ) :  

su(2 ,1 ) :  

SO(3, 1) ..~ SL(2, C)I~: 

SO(4, 1) ~ Sp(1, 1): 

SO(3, 2) ~ Sp(2, R): 

S0(5, 1) ,,~ SU*(4): 

maxrankTr = n(n  - 1), 

m a x r a n k r  = 4, 

max rank Ir = 4, 

max rank 7r = 4, 

max rank rr = 6, 

max rank r = 8. 

(The symbol ~ means the local isomorphism of Lie groups.) We show this fact 

by classifying high (even) dimensional subalgebras of each g, and check whether 

they admit a left invariant symplectic structure or not (cf. Proposition 2). For 

the remaining non-compact Lie groups, we do not know whether the values in 

Theorem 1 give the actual maximum of rank lr or not at present. (See w (2), (3) 

and (5).) 
Now, we explain the contents of this paper briefly. After reformulating our 

problem to the dual "symplectic" form in w we give a proof of Theorem 1 in 

24 (n = a), 

where G R means the complex Lie group G itself, but  considered as a real Lie 

group. 

(The explicit form of each Poisson structure is stated in the proof of Theorem 

1 given in w167 We can also show that among these solutions, the following 

cases give the highest rank solutions of the CYB-equation: 

(19 = q), 
(p = even > q), 
(p = odd > q), 
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w167 We prove this theorem using case by case construction because the con- 

struction depends heavily on the property of each Lie group. For example, among 

three Grassmann type Lie groups, SU(p, q) and SO(p, q) are essentially related 

to the structure of graded Lie algebras of the second kind, though Sp(p, q) is not. 

To construct such structures, not a little calculation on matrices is required for 

most cases. In the final section (w we give some results and comments related 

to left invariant Poisson structures, such as Poisson Lie groups, the classification 

of solutions for SL(n, R),  algebraic sets defined by the CYB-equation, etc. 

1. Le f t  i nva r i an t  P o i s s o n  s t r u c t u r e s  

In this section, we first review some known facts on left-invariant Poisson struc- 

tures on G, which we use in this paper. To construct a high rank solution of 

[u, 7r]s = 0, we reformulate this equation in the following dual form. 

PROPOSITION 2 (cf. [2; p. 179], [7; p. 7], [16]): There is a one-to-one corre- 

spondence between the set  o f  solutions of  the classical Yang -Bax t e r  equation 

[Tr, ~T]s : 0 and the set  o f  pairs (g', w), where g / i s  an even dimensional  subalge- 

bra of g and w is a left invariant symplec t ic  form on 9 ~. In addition, under this 

correspondence,  we have rank 7r : dim 9 ~. 

(Here, a left invariant symplectic form on 9' actually !mplies a left invariant 

symplectic form on a Lie group whose Lie algebra is gt.) 

The correspondence is given as follows (see [7; p. 7]): Let ~T be a solution of 

[Tr, Tr]s : 0 with rank 7r : 2k, and we express it as 

7r = X I A YI + . . .  + X k A Yk. 

Then, from the condition [~r, r ] s  -- 0, we know that 9' = ( X 1 , . . . ,  X k ,  Y 1 , . . . ,  Yk) 

is a 2k-dimensional subalgebra of g, corresponding to r .  We define a linear map 

~r: 9" -+ 9 by 

Z) = 9*- 

Then, the symplectic form w on 9 ~ and r E A29 are related by 

w ( X , Y )  = : , r ( 'k- l (X),Cr- ' ( r ) ) ,  X , Y  e 9', 

= e 9",  

where i*: 9" --~ 9 r* is the dual map of the inclusion i: 9 t --+ 9, and #: 9 I* --~ 91 is 

the map defined by w(a #, X) -- a (X)  for c~ E 9'*, X E 9'. It should be remarked 

that  from this proposition, we know that the value "max rank 7r" is just equal to 
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the maximum dimensional subalgebra of g admitting a left invariant symplectic 

structure. 

Two dimensional Lie algebras always admit a left invariant symplectic struc- 

ture, and hence from the above proposition, there is a natural one-to-one cor- 

respondence between the set of two-dimensional subalgebras of g and the set of 

solutions of the CYB-equation with rank ~r = 2. Of course, this fact also can be 

verified directly by considering the equality [XAY, X A Y ] s  = 2XAYA [X, Y] -- 0. 

In a sense, a Poisson structure is a generalization of symplectic structures. 

In our situation, left invariant Poisson structure is of constant rank everywhere, 

and hence it defines a left invariant foliation on G whose leaves are all symplec- 

tic manifolds (cf. [21], [24]). The above proposition may be considered as a 

reformulation of this fact. 

Concerning left invariant symplectic structures on Lie groups, the following 

results have already been proved by B. Y. Chu. 

PROPOSITION 3 (cf. [9]): (1) A left invariant symplectic structure does not exist 

on semi-simple Lie groups. 

(2) Assume there exists a left invariant symplectic structure on a compact Lie 

group G. Then, G is abelian. 

(3) Assume there exists a left invariant symplectic structure on a unimodular 

Lie group G. Then, G is solvable. 

In particular, from Proposition 2 and Proposition 3 (1), we know that  max rank ~r 

< dim G for semi-simple Lie groups. 

Concerning the solution of the CYB-equation on compact Lie groups, the fol- 

lowing result is known. From this proposition, we may say that we essentially 

know all solutions of the CYB-equation for compact cases. 

PROPOSITION 4 (cf. [7; p. 12]): Assume G is compact, and let r be a solution 

of [~r, iris = 0 on G. Then, 7r belongs to a space A2tl, where a is an abelian 

subalgebra of  g. In particular, we have max rank ~r = 211/2-rank G] for compact 

G. 

From this result, we immediately know that the solution of [Tr, 7r]s = 0 for the 

group SO(3) (or SU(2)) must be trivial, i.e., ~r = 0 because rank G = 1. (See 

also [2110 

2. T h e  case  o f  SU(p, q) 

In the following, we give a proof of Theorem 1 using case by case construction of 

desired dimensional subalgebras g' and symplectic forms w on g' (cf. Proposition 
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2). As for the Lie group SL(n, R), Belavin and Drinfel'd [2; p. 180] already 

constructed a solution with rank 7r -= n(n - 1) (cf. w (2)), and hence we treat  

the remaining non-compact classical real simple Lie groups. In this section, we 

first consider the case SU(B, q) (p > q > 1). 

PROPOSITION 5: There exists a left invariant Poisson structure 7r on the Lie 

group SU(p, q) (p _> q >_ 1) with 

rank lr = ~ 2pq (p = q, q + 1, q + 2), 
L 2pq+ 2 [ ( p - q - 1 ) / 2 ]  ( p > _ q + 3 ) .  

Proof'. We explicitly construct a desired dimensional subalgebra 1~ ~ of 1~ = 

5u(p, q) and a symplectic form on g~. Before defining a subalgebra g~, we first 

prepare some notations. We denote by M(p, q; K)  the set of matrices of size (p, q) 

taking values in the field K. For A �9 M(q,q; C), we define a new matrix [A] of 

the same size by 
aij (i < j ) ,  

[A]i j= 0 ( i = j ) ,  
- a i j  (i > j) ,  

where aij is the ( i , j )-component of A, and put 

0 1 

E = 

1 0 

1 

�9 M(q, q; R). 

Note that  [A] is skew-Hermitian if A is Hermitian. For X E M(q ,q;C) ,  the 

matrix X E  is uniquely expressed as a sum X E  = A + B, where t~  = A and 

t ~  + B -- 0. In this situation, we define two matrices X(1) and X (2) by 

X (1) = [A] - B and X (2) = E([A] + B)E .  

Then, we have the following lemma. 

LEMMA 6: Assume X ,  Y �9 M(q, q; C) and P, Q �9 M(p  - q, q; C). 

(1) X (1), X (2) �9 U(q) and Tr X 0) + Tr X (2) = 0. 

(2) X (2) = EX(O E + E X  - t-XE. 

(3) For Z = (tffQ _ t O p ) E  ' we have 

Z(1) = t-~p _ t-~Q, Z(2) = E( t f fQ _ t-~p)E" 
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(4) For Z = X ( U Y  - Y(1)X + XY(2 )  - YX(2 ) ,  we have 

Z(1) _~_ [X(1),  y (1) ]  _~_ X t ~  _ y t -~ ,  
Z(2) = [X(2), y(2)] + t - ~ y  _ t ~ X "  

Proof'. The properties (1) and (2) follow immediately from the definition, and 

the property (3) follows from the fact t ~ Q  _ t ~ p  c u(q). Now, we prove (4). We 

express the matrix Y E  as a sum Y E  = C + D ( t ~  = C and t ~  + D -- 0). Then, 

we have the decomposition 

(X(1)y - g(1) X + XY (2) _ y X ( 2 ) ) E  = 

([A]C - [CIA + A[C] - C[A]) 

+([A]D - D[A] + A D  + D A  + B[C] - [C]B - B e  - CB ) .  

In the last expression, the first term is Hermitian and the second term is skew- 

Hermitian, and hence we have 

Z (1) =[[A]C - [C]A + A[C] - C[A]] 

- lAID + D[A]  - A D  - D A  - B[C] + [C]B + B C  + C B .  

On the other hand, we can easily prove the equality 

[ [A ]C + A[C] ] + 

all 0)/cl1 0) 
�9 .. ' . .  = [A][C] + AC,  

0 aqq 0 eqq 

where aij (resp. cij) is the (i,j)-component of A (resp. C). In fact, the (i , j)-  

components of both sides are equal to 

aiicij -]- 2 E i<k<j  aikCkj + ai jc j j  (i < j ) ,  

ai~cii (i = j ) ,  
ai jc j j  + 2 ~ j < k < i a i k c k  J +ai ic i j  (i > j ) .  

By using this equality, we have 

Z (1) =[A][C]-  [C][A] + A C -  C A  

- lAID + DIAl  - A D  - D A  - B[C]  + [C]B + B C  + C B ,  

which is equal to [X(1),Y (U] + X t Y -  Yt-X.  The second equality of (4) can be 

proved directly from (2) and the first one. | 

Now, we define a subalgebra g' of zu(p, q) as follows. We express an element 

of su(p, q) in the block form 
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Y Z t~  v-q 

P Q W q 

q P--q q 

X, W c u(q), Z e u ( p - q ) ,  

where  Tr  X + Tr  Z + Tr  W = 0. We put  

91 = 
{ (x (1)  0 0  0 X ) 0 

t ~  0 X (2) 
X E M(q,q;C)}, 

{(0 0) } 
g2 = - P  0 PE P E M(p - q, q; C) , 

0 Et-fi 0 

and let 93 be a 2[(p - q - 1)/2]-dimensional  subalgebra  of the space {(000) a 0 / 
0 K 0 K =  ". a k E R  

�9 ' T r K = 0  " 
0 0 0 0 ap_qi 

(In the  case p < q + 2, we put  93 = { 0 }.) Using L e m m a  6, we can easily check 

tha t  g' = 91 | 92 | 93 is a suba lgebra  of ~u(p, q), satisfying the following bracket  

table: 
[,] 
91 
g2 

93 

For example ,  the proper t ies  [91,91 

91 ~]2 93 
91 92 0 

91 92 
0 

C 91, [91,92] C 92, [92,92] C 91 follow f rom 
(4), (2), (3) in L e m m a  6, respectively. The  dimensions of 91, 92 are equal to 2q 2 

and 2q(p - q), and hence, 9' is the desired dimensional  subalgebra.  

Finally, we define a symplect ic  form w on 9 t as follows. First ,  we define a E 9'* 

by 

a - P  K P E  = i . ~ ( X E - E * N ) / 2 e R .  
t ~  E t ~  X(2) 

Then,  we can prove tha t  the exact  2-form - d a  is non-degenerate  on the subspace  

91 @ 92, and - d a ( g 3 , 9 ' )  = 0. For example,  by expressing the ma t r ix  

( X(1) O X ) 
0 0 0 E 9~ 

t-R 0 X (2) 
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simply as X etc., we have - d a ( X ,  Y )  = a([X, r ] )  = i .  Tr ( Z E  - E t Z ) / 2 ,  where 

Z = X ( 1 ) Y - Y ( 1 ) X + X Y  (2) - Y X  (2). Since ( Z E - E t - Z ) / 2  is the skew-Hermitian 

part of Z E ,  the value a([X, Y]) is equal to 

i .  Tr([AID - D [ A ]  + A D  + D A  + B[C] - [C]B - B C  - CB) ,  

w h e r e X E  = A + B,  Y E  = C + D ( t -A= A,t-C = C , t ~  + B = t ~  + D = O. 

Remember the proof of Lemma 6 (4).) Then, we immediately know that this is 

equal to 2i. Tr ( A D - B C ) ,  and the non-degeneracy of - d a  on ~]1 follows from this 

expression. The non-degeneracy of - d a  on g2 and the properties - d a ( g l ,  g2) = 

-da(g3 ,  gr) = 0 can be proved easily. Next, we fix a symplectic form w' on the 

abelian subalgebra g3. By using the decomposition gr = gl | g2 @ g3, we can 

naturally extend ca' to the 2-form on g', which is also closed on account of the 

property [g~, g~] C gl @ g2. Then, by putting w = - d a  + w ~, we obtain the desired 

symplectic form on g'. II 

Remark: The above construction is essentially related to the graded Lie alge- 

bra of the second kind. The Lie algebru ~u(p, q) possesses a graded Lie algebra 

structure ~u(p, q) = 1_2 ~ . . -  @ [2 satisfying dim [+2 = 1. (For the explicit decom- 

position, see [8], [14].) We denote by E the element of [0 giving the gradation, 

i.e., lp = {X E su(p,q) I [E,X] = p X }  for p = - 2  ~ 2. Then the 2 ( p +  q -  1)- 

dimensional subalgebra (E) @ [1 @ [2 admits a left invariant symplectic form w 

defined by w(X,  Y) = [2-component of [X,Y]. And we can easily check that  

this subalgebra has a trivial intersection with the subalgebra s u ( p -  1,q - 1) 

obtained by deleting the outer layer of su(p, q). Next, we once again construct 

a similar subalgebra starting from su(p - 1, q - 1), and repeat this procedure q 

times. Then, collecting these subalgebras and symplectic forms, we finally ob- 

tain the subalgebra ~1 (~ 92 and the left invariant symplectic form - d a  on it 

constructed in the above proof. The final subalgebra gr is obtained by adding 

the abelian Lie algebra g3 which is contained in the remaining core compact 

subalgehra su(p - q, (}) = ~u(p - q) C su(p, q). 

3. T h e  case  o f  SO(p,q) 

In the case of G =- SO(p,q) (p > q > 1), there exists a Poisson structure with 

rank ~r -- pq t- (p - q)/2. The construction is almost the same as SU(p, q). But, it 

is a little more complicated and we must divide the construction into several cases 

according to the parity of p and q. Precisely, we have the following proposition. 



Vol. 116, 2000 LEFT INVARIANT POISSON STRUCTURES 199 

PROPOSITION 7: There exists a left invariant Poisson structure 7r on the Lie 

group SO(p,  q) (p _~ q _7 1) with 

rank ~ = 
pq + 2[(~-  q)/4] 
(p + 1)(q - 1) + 2[(3p - 3q - 1)/4] + c 

(p + 1)(q - 1) + 213(P - q)/4] + c 

(q = even), 

(p >_ q + 1, p = even, q = odd), 

(p > q, p --- odd, q = odd), 

where 
2 p = q + l , q + 2 ,  q + 4 ,  q + 5 ,  

c =  4 p = q = 3 ,  

0 otherwise. 

Proof" We cons t ruc t  a suba lgebra  91 of o(p, q) with the desired dimension by 

dividing roughly  into two cases according as the par i ty  of q. 

(i) T h e  case q = even. 

We pu t  q -- 2r. In this case, we can construct  a subalgebra, 9 ~ a lmost  in the same 

way as g = ~u(p, q). First,  as in w we put  

aij (i < j) ,  

[A ]ij = 0 (i = j ) ,  

- a i j  (i > j ) ,  

for A E M ( q , q ; R ) .  In this case, [A] is skew-symmetr ic  if A is symmetr ic .  In 

addit ion,  we put  

E = 

0 12 

E M(2r, 2r; R) ,  

I2 0 
12 

(10) 
1 2 =  0 1 " 

For X E M(2r ,  2r; R) ,  the  ma t r ix  X E  is uniquely expressed as a sum X E  = 

A + B, where  tA = A and tB  + B = 0. In this si tuation,  we put  

X ( 1 ) = [ A ] - B  and X ( 2 ) = E ( [ A ] + B ) E  

as before. Then,  we have the following lemma.  This  l e m m a  can be proved in the  

same  way as L e m m a  6, and we omit  the proof. 

LnMMA 8: Assume X ,  Y E M(2r,  2r; R )  and P, Q E M(p  - 2r, 2r; R) .  

(1) X (1), X (2) E 0(2r).  
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(2) X (2) = EX(1 )E  + E X  - t X E .  

(3) For Z = ( tpQ _ t Q p ) E  ' we have 

Z(1) _-- t Q p  _ tpQ,  z(2) = E ( t p Q  _ t Q p ) E  

(4) For Z = X(1)Y  - y ( U X  + XY(2) - yX(2), we have 

Z(1) = [X(1), y(1)] + x t y  _ y t x ,  

Z (2) = [X(2), y (  2)] + t X y  _ t y x "  

Now, under these preliminaries, we put 

~1 = 0 0 0 p--q 

t X  0 X (2) q 

q p - q  q 

X e M ( q , q ; R ) } ,  

{(o o)q 
~2 = - P  0 P E  p-q  

0 E t p  0 q 
q p - q  q 

P C M ( p -  q , q ; R ) } ,  

and let 1~3 be a 2[(p - q)/4]-dimensional abelian subalgebra of the space {(0 0 0) 
0 K 0 
0 0 0 

K e o ( p -  q ) } .  

Then, by using the properties in Lemma 8, we can easily show that the bracket 
satisfies the following table: 

[ , ]  gl g2 g3 
gl  g l  ~2 0 

g2 gl g2 
g3 0 

Hence, by putting fit = $1 �9 g2 @ g3, gt is a subalgebra of o(p, q) with the desired 

dimension. 
Next, we define a left invariant symplectic form on g'. For this purpose, we 

first define the element a C g'* by 

- P  = + "  

t X  E t p  X (2) 
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where xl} ) is the ( i , j )-component of X (1) E M(2r, 2r;R). Then, - d a  is non- 

degenerate on the subspace ga @ g2, and -da(g3 ,~  ~) = 0. For example, by 

expressing the matrix 
( X(1) O X ) 

0 0 0 E ~1 
tX 0 X (2) 

,(1) where simply as X etc., we have -da(X, Y) = a([X, Y]) = z~  ) + . . .  + ~2T-1,2r, 

z}j ) is the ( i , j ) -component  of Z (1) = [X (1), y(1)] + Xty  _ y t x .  We express the 

matrices X and Y in terms of (2,2)-blocks as follows: 

X . . . .  , Y . . . .  , 

Xrl  "'" Xrr Yrl  " "  rrr 

where Xij, Yij c M(2,2 ;R) .  Then, the matrix X (1) can he expressed in the 

following block form: 

txj,r+x_ i (i < j), 
X~ 1) X ~ (i = j), i,r+l--i 

-X~,r+~_j (i > j), 

where we put P~ = ( ~ oC)f~  ac db)" Using this expres- 

sion, we can show that  z}~ ) + . . .  + z~1~)_1,2~ is equal to the (1,2)-component of 

the (2, 2)-matrix 

E (x~l)g(il) (1) (1) 
- ~ j  xj~ + x~tY~j - Y~jtx~5) 

i,j 

= ~ (x~ /Y~  - ~ / x ~ A  - ~ ('x~jY, j - % x , ~ ) ,  
i+j<_r+l r-b2<_i+j 

and the non-degeneracy of - d a  on 91 follows immediately from this formula. 

Other properties on - d a  can be proved in the same way. Next, let co ~ be a left 

invariant symplectic form on 93. We can naturally extend J to the form on 0 ~ 

by using the decomposition 1~ t = 91 @ g2 (~ g3. Then, since [g~, g~] c ga �9 g2, we 

can easily check that  J is also closed on 9 ~. Hence, by putting w = -da + J ,  
we obtain the desired symplectic form on g~. 

(ii) The case q = odd. 

In this case, we first prove the following lemma, corresponding to the case q = 1 

in Proposition 7. We later use this lemma in the proof of Proposition 7 for general 

cases q = odd > 3. 
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LEMMA 9: 

SO(s,  1) (s _> 1) with 

7r = { rank 

where 

Proo~ 

There  exists a left invariant Poisson structure ~r on the Lie group 

213s/4] - 2 + c ( s  = even), 

2 1 3 ( s - 1 ) / 4 ] + c  ( s = o d d ) ,  

2 s = 2 , 3 , 5 , 6 ,  
c = 0 otherwise. 

The  case s = 1 is tr ivial  since o(1, 1) is the 1-dimensional abel ian Lie 

algebra.  In the case s = 2, 0(2, 1) is isomorphic to s[(2, R) ,  and we a l ready know 

tha t  it admi t s  a left invariant  Poisson s t ruc ture  with rank 7r = 2 (cf. [2; p. 180], 

~7 (2)). 

Next ,  we cons t ruc t  a Poisson s t ruc ture  on 0(3, 1) with rankTr = 4. (See also 

[25; p. 22].) We denote  by E~j the ma t r ix  such tha t  the ( i , j ) - componen t  is 1 and  

other  componen t s  are all zero, and put  

X1 = Et2 - E21 + E24 + E42, X2 = El3 - E31 + E34 + E43, 

X3 = El4 + E41, X4 = E23 - E32. 

Then,  it is easy to check tha t  g' = ( X 1 , . . . ,  X4) is a 4-dimensional  suba lgebra  of 

0(3, 1). We define a e g'* by 

a ( X )  = X l - c o m p o n e n t  of X 

for X E g'.  Then,  the exact  2-form w = - d a  gives the desired symplect ic  fo rm 

on g,. 

In the case of s = 5, 6, we put  

Xi = EI~ - E~I + Ei,s+l + E8+1# (2 < i < 5), 

Y1 = E23 - E32 + E45 - E~4, Y2 = E24 - E42 - E35 + E53,  

Y3 = E25 - E52 + E34 - E43, II4 = E1,8+1 + Es+t,1. 

Then  g'  = (X2 , . .  �9 Xs,  Y1,-. �9 Y4} is the 8-dimensional  suba lgebra  of o(s, 1). Le t  

a be  the  e lement  of g'* defined by 

a ( X )  = X2-component  of X 

for X C g~. Then,  we can direct ly check tha t  w -- - d a  is the symplect ic  form on 
gt. 

Next ,  we consider the remaining  general  cases s = 4 and s > 7. R e m a r k  t h a t  

c -- 0 for these cases. We divide the  proof  into three  types  according to the value 
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of s. We first put 

Xi  = Eli  - Eil  + Ei,~+l + E8+1#, 
Yj = E2j,2j+ 1 -- E2j+I,2j,  

for 2 < i < s and 1 < j < [ ( s - 1 ) / 2 ] .  Then, the bracket operations of these 

matrices are given by 

[X2j,Yj] = X2j+I,  [X2j+I,Yj] = - X 2 j ,  1 <_ j <_ [(s - 1)/2], 

and other brackets are all zero. In particular, (Xi ,  Yj) is a [3(s-  1)/2]-dimensional 

subalgebra of o(s, 1). 

(1) The case s = 4k + 1, 4k + 2. 

We put gP = (X2, . . . ,X4k+I ,Y1, . . . ,Y2k) .  Then, g~ is a 6k-dimensional sub- 

algebra of 0(s, 1). We denote by ai, ~j E ll'* the dual basis of 9' = (Xi ,  Yj). 

Then, from the above bracket operations, we have 

det2j+l = - a 2 j  A ~ j ,  do~2j = a 2 j + l  A ~ j ,  dflj -- 0 

for 1 < j < 2k. Hence, the 2-form 

2k k 

j = l  i=l  

gives the desired symplectic form on gr. 

(2) The case s = 4k - 1. 

We put g' = (X2 , . . . ,  X 4 k - I , Y 1 , . . . ,  Y2k-2). Then g' is a ( 6 k -  4)-dimensional 

subalgebra of o(4k - 1, 1). We denote by ai , /3j  C g'* the dual basis of (Xi, Yj), 

as above. Then, we have 

do~2j+l -- -oz2j A ~j ,  dol2j = ~2j+1 A ~j, d~j --- O, 

for 1 _< j < 2k - 2, and dc~4k-2 -= d~4k-1 = O. Hence, the 2-form 

2k-1 k-1 

j----1 i=1 

gives the desired symplectic form on gr. 

(3) The ease s = 4k. 

We put g' = {X2, . . . ,X4k,Y1, . . . ,Y2k-1) .  Then g' is a (6k - 2)-dimensional 

subalgebra of 0(4k, 1), and by using a dual basis as above, we have 

dc~2j+l = -O~2j A ~j ,  da2 j  • oz2j+l A flj,  d~j  = 0 
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for 1 _~ j _~ 2k - 1, and da4k = 0. Hence, tile 2-form 

2k-1 k-I  
CO = E OL2d A Ol2j+l q'- E f l 2 i -  1 A fl2i q- O~4k A fl2k-1 

j=l  i=1 

gives the desired symplectic form on g'. | 

Next, we give the proof of Proposition 7 for the case q = odd _> 3. We put  
q = 2r + 1 (r > 1). Using the same notations as in the case of q = even, we put 

( X (1) 0 0 X / q-1 
0 0 0 0 p -q+l  

gl = 0 0 0 0 1 
t X  0 0 X (2) q-1 
q-1 p -q+l  1 q-1 

X e M ( q -  1 , q -  1 ; R ) } ,  

{/o 0 o) _1 L } 
-- 0 0 p -q+l  P c M ( p - q + l , q - 1 ; R )  

9 2 =  0 0 0 0 1 

0 E t p  0 0 q-1 

q--1 p--q+l 1 q - t  

( 0  0 tQ 0 
0 0 0 0 

9a -- Q 0 0 -QE 
0 0 E tQ  0 

q-1 p -q+l  1 q-1 

q-1 
p-qT1 

1 

q-1 

Q E M ( 1 , q -  1 ; R ) } ,  

where E is the matrix defined by 

E = 

h 0 

I2 

E M(2r,  2r; R), 
(10) 

12= 0 1 ' 

h 

as before. In addition, we imbed the subalgebra of o(s, 1) (s = p - q + 1) 
constructed in Lemma 9 as a subspace of the following space in a natural way: 
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0 K L 0 p-q+l 
0 tL 0 0 1 
0 0 0 0 q-1 

q - l p - q + l  1 q-1 

K e o ( p -  q+  1) 
L E M ( p -  q +  1 , 1 ; R )  

' ~ o ( p - q +  l,1). 

We express this subspace  as g4. Then,  as in the case of q = even, we can show 

tha t  the  bracket  opera t ions  satisfy the following table: 

[,] 

g2 

ft3 
g4 

gl ~2 ~3 g4 

gl 92 93 0 
gl 0 g2 -~ ~3 

~1 ~2 
fta 

Hence, $' = 91 @ " "  @ g4 is a subalgebra  of o(p, q). In addition, the  dimension 

of $' is equal  to the one given in Proposi t ion 7 except  the ease (p, q) = (3, 3). 

Finally, the  symplect ic  form w on it t can be defined in the same way as in the 

case of q = even by adding the  symplect ic  form w' on ft4 cons t ruc ted  in L e m m a  

9 and  the  exact  form -da  on 9 ~, where a E 9 ~* is defined by 

- P  K L PE = x~ ) +""  + "~2~-x,2~, 
o~ Q t L 0 -Q E 

tX Etp  EtQ X (2) 

as before. Verification of these facts can be done complete ly  in the same way as 

before, and  we leave it to the readers. 

Finally, we cons t ruc t  a symplect ic  s t ruc ture  on a 12-dimensional suba lgebra  of 

0(3, 3) as follows. We put  

g , = { (  AtB A+B-tBB ) I A E o ( 3 ) , B E M ( 3 , 3 ; R ) I .  

Then,  gt is a 12-dimensional subalgebra,  and we define the element a E g'* by 

a ( X )  = x12 + x15 + x26, 

where  xij  is the ( i , j ) - componen t  of X E g'. Then,  it is direct ly checked tha t  

- d a  gives a left invariant  symplect ic  s t ruc ture  on g/, and we thus comple te  the  

proof  of Propos i t ion  7. I 
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Remark:  The construction of the subalgebra of o(p, q) stated in this proof is 

also based on the graded Lie algebra structure o(p, q) = [-2 ~ )""  @ [2 with dim 

[+2 = 1, as in the case of ~u(p,q) (cf. [8], [14]). In the special case 0(3,3), it is 

isomorphic to z[(4, R),  and we already know that s[(4, R) possesses a left invariant 

Poisson structure with rank ~r = 12. For general o(p,p),  we can construct the 

1/2 �9 p(3p - 1)-dimensional subalgebra of o(p,p) by changing 3 into p in the 

above definition of g' C 0(3, 3). The integer 1/2 �9 p(3p - 1) is even if and only 

if p - 0 or 3 (mod 4), but it seems that this subalgebra does not possess a left 

invariant symplectic structure except for the case p = 3. (In the case of p = 4, 

we can show that  the corresponding 22-dimensional subalgebra does not admit 

an "exact" left invariant symplectic structure.) 

4. T h e  case of  Sp(p,q) 

In this section, we treat the remaining Grassmann type Lie group G -- Sp(p, q) 

(p > q > 1). The construction is somewhat different from the previous cases 

SU(p, q) and SO(p, q). (See Remark after the proof of Proposition 10.) 

PROPOSITION 10: There  exists a left invariant Poisson structure Ir on the Lie 

group Sp(p, q) (p >_ q _> 1) with 

2p + 2p (p = q), 
rank ~r -- 2pq + p (p = even > q), 

2pq + p - 1  (p = odd > q). 

To prove this proposition, we first express the Lie algebra of Sp(p, q) in terms 

of quaternions H (cf. [12]). An element of H is expressed as ao + al i  + a2j + a3k 

(ap C R), and the product of i, j ,  k is given by the rule 

i 2 = j2 = k 2 = -1 ,  

i j = k ,  j k = i ,  k i = j ,  

j i = - k ,  k j = - i ,  i k = - j .  

We imbed the field of real numbers R and the field of complex numbers C into 

H in a naturul way. The conjugate of w = ao + al i  + a2j + a3k E H is given by 

= ao - a l l  - a2j  - a3k. Then the following identity holds: 

WlW2 = W2 ~1 ~ r  Wl,W2 E H.  

Under these notations, we can express the Lie algebra of Sp(p, q) as 
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sp(p,q) : {X e M(p + q,p + q;H) [ t-XIv, q + Ip,qX = O} 

P 

t - B ) I t - A + A = O  , t C + C = O ,  } 

C A c M(p,p;H),  B E M(q,p;H), C c M(q,q;H) ' 

where 

0 -Iq 

and Ip is the identity matrix of degree p. In general, an element X E M(n, n; H) 

can be uniquely expressed as X = Y + j Z  (Is, Z C M(n, n; C)), and the map 

( ) Y - Z  
Y + j Z - +  Z 

gives a realization of the Lie algebra M(n, n; H) in M(2n, 2n; C). (Note that 

j-2 = zj for z E C.) By this map, the Lie algebra zp(p, q) is identified with the 

Lie algebra 

B1 C1 - B 2  - 6 2  q A1 E u(p), C1 E u(q) 
A2 - t B 2  A__I t _Bl p tA2 = A2, tC2 = C2 " 

B2 C2 B1 C1 q 

P q P q 

We remark that the definition of sp(p, q) in [13; p. 446] is slightly different from 

the above. But it is easy to see that the two definitions coincide by the isomor- 
phism given by X -~ P - 1 X P ,  where 

I o) 
p =  Iq 

G 
o -Iq 

In the following, we assume that the Lie algebra sp(p, q) is always realized in 

M(p + q,p + q; H) in the above way. 

Proof of Proposition 10: We first treat the case p = q. We define two subspaces 

1~1 and g2 of g = sp(p,p) by 

j X  j X j  ] + 

P P 
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D 0 ". d i E R  
g 2  = 0 - D  = " ' " 

0 dpi 

We put $1 = gl | g2, and express the element of 9' simply by the pair (X, D), 

where X and D are matrices appearing in the above definition of 9i. Then, we 

have 

[(Xl, D1), (X2, D2)] = ([Xl, D2] - [)(2, D1], 0) C 91, 

and hence 9' is a (2p2+2p)-dimensional subalgebra ofsp(p,p).  We define elements 

of 9' by 
xi t  -- ( E i j -  Eji, 0), Y~j = (ig,j + iEt~, 0), 
Zit = ( jEi j  + jE t i ,  0), Wit = (kgi t  + kEti ,  0), 
Di = (0, iEii), 

where Eit is the matrix such that the (i, j)-component is 1 and other components 

are all zero. Then, the bracket operations of these elements are given by 

[Xit, Da] = 5tk Yki -- 5ik Ykj, 

[Y~t, Dk] = 5tkXki + 5~kXkt, 

[Z~t, Dk] = --Stk Wk~ -- 5ik Wkt, 

[Wit, Dk] = 5jkZki + 5ikZkt, 

and the remaining brackets are all zero. The elements 

{ Xi j  }l <_i<t<_p 1.3 {Yij, Zij, Wit }l <_i< j<p U { Di }l<i<p 

form a basis of 9 I, and we denote its dual basis by air, ~lit, 7it, sit,  #i, respec- 

tively. Then, from the above bracket table, we have 

dait = flij A (#j - #i) (i < j) ,  
d~it = aij A (#i - #t) (i < j) ,  
df~.  = O, 

d~it = - s i t  A (ui + m)  (i < j), 
d% = ~it/x (m + . t )  (i _< j),  
d#i = O. 

Hence, the 2-form w = )-~'-i<t aij A 13it + ~ i < j  7it A r + )-']i f~ii A #i is non- 

degenerate and closed, which gives a desired left invariant symplectic structure 

on 91 . 

Next, we treat  the case p > q. In this case, we express an element ofsp(p, q) C 

M ( p  + q,p + q;H) as 
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( A _ t ~  t~  ~ q t ~ + A = O ,  
B D t~  ) t ~  p - q  , + D = 0 ,  
C E F q t - f f + F = O .  
q p-q q 

Using this notation, we 
We define the elements 

X i j  = 

construct a subalgebra 9' of 5p(p, q) in the following way. 
of sp(p, q) by 

i(Eij +Ej i )  0 k(E~j + Eji) 
0 0 0 ) , 

- k ( E i j  + Eji) 0 i(Eij + Eji) 

X !  ij = 

E i j - E j i  0 j ( E ~ j - E j i )  
0 0 0 ) , 

j (Ei j  - Eji) 0 - ( E i j  - Eji) 

E i j -  Eji 0 j (Ei j  + Eji) 
Y~j= 0 0 0 ) , 

- j ( E i j  + Eji) 0 Bit - Eji 

' =  0 0 0 ) , 
Yij k(Eij - Eji) 0 - i (E i j  + Eji) 

Zij = j 
(o o) 

0 jEi j  , Z~j = iEij 0 kEij  , 
- j E j i  0 0 - k E j i  0 

o o ) ( o o o )  
W i =  0 0 0 , D i =  0 iEii 0 �9 

0 0 -iEi~ 0 0 0 

Note that the spaces {Xij (1 < i <_ j < q), Xi~j (1 < i 
{Z~j, Z~j(1 < i < p - q, 1 ~ j <_ q)} just coincide with the spaces 

0 0 0 X E u(q) , 
j X  0 j X j  

< j  _< q)}, 

{(~ ~ } A 0 A j  A E M ( p - q , q ; C )  , 
0 _ j t ~  0 

respectively. The bracket operations of these matrices are given by 
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[Xi5, Ykl] = 25jk Xil + 25ik Xsl, 
[ X q ,  Ygt] = --25skX~t -- 25~kX~z, 
[x~ 5, Y~] = 2~5~x~ - 2~,~x},, 
X t I [ ~5, Y M  = 2 5 5 k x .  - 25~kXsl, 

[x~ 5, w d  = ~sk x ~  - ~k Xsk, 
[Yis, Ya] = 2(fjk Y~ - 25i~Y~j, 
[Yq, Y~] = 25skY~i - 25i~Y;5 , 
[Yi}, Y~] = -2~5~ Y~ + 25i~Ykj, 
[Y~5, z~]  = -[Y~, z~] -- -2~.z~5,  

[Yij, Wk ] = (~sk Yi~k -- 5ik Y~5, 
[Y'j, w~] = -'~5~5~ + ~ Y~5, 
[z,5, z~,] = [z~5, z'~,] = -~,~ x},,  
[zq, z'~] = - ~  xs~, 

and the remaining 

space t~' spanned by the matrices 

brackets are all zero. Using these relations, we know that the 

Xij (1 <_i <_j <q), X~j (1 _<i < j  _<q), 
Yq (l <_i <_j <_ q), Y/j (l <_i < j <_ q), 
Zij ( l < _ i < p - q ,  l<_ j<q) ,  Z~j ( l<_i<_p-q ,  l<_j<_q), 
Wi ( l_<i_<q) ,  Di (l < _ i < p - q )  

forms a (2pq + p)-dimensional subalgebra 9' of sp(p, q). (We remark that Xij = 
Xji and X~j = -X~i , but there is no linear relation between Y/j, Yji, Y/}, Yji, 
and 1~' does not contain elements Y/j (i > j),  Y/} (i _ j).) We denote by c~ij, 

a~j, flij, fl~j, 7ij, "~j, ei, #i the dual basis of 9 ~*. Then, from the above bracket 
relations, we have 

i - 1  i - 1  p - q  

d . .  = 2E ; + Z'Ys  i, %, 
j = l  j = l  j = l  

and d~l . . . . .  deq = d#l . . . . .  d#v_q = 0. Hence, in the case p = even, the 
2-form 

p-q q p/2 

w = - 2  y ~  ~ i  AflSi-4 E ai iAfl i i -2 ~ c~:iA~}i+~-~ E 75iA7}i+~--~ u2i-lAu2i 
j < i  i 5<i  5=1 i----1 i = l  
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gives the desired symplectic form on g~, where /21 : C 1 , . . .  ,Vq  ~ ~q ,  Vq+  1 = 

#1 , . . . ,  vp = #p_q. In the case p = odd, we can construct the subalgebra and the 

symplectic form on it in exactly the same way by deleting the last matrix Dp_q 

from the above construction. | 

Remark: As in the case ofsu(p, q) in w we can construct a subalgebra ofsp(p, q) 

with dimension 4pq + 2[(p-q)/2]  in exactly the same way by changing the field C 

into H. But it seems that this subalgebra does not admit a left invariant symplec- 

tic structure, and we must adopt a different construction than above. (We can 

verify this conjecture for the Lie algebras sp(1, 1), ~p(2, 1), ~p(3, 1) and ~p(2, 2), 

though the Lie algebra sp(1, 1) _~ 0(4, 1) admits another type of 4-dimensional 

subalgebra possessing a left invariant symplectic structure; cf. Proposition 7.) 

This difference comes from the fact that general sp(p, q) does not admit a struc- 

ture of a graded Lie algebra of the second kind satisfying the condition dim [+2 

= 1 in contrast with ~u(p, q) and o(p, q) (cf. [8], [14]). 

5. T h e  cases  of  SU*(2n), Sp(n,R)  and  SO*(2n) 

In this section, we treat the remaining non-compact classical simple Lie groups 

of non-Grassmann type. 

PROPOSITION 11: There exists a left invariant Poisson structure 7r on the Lie 

group SU*(2n) (n _> 2) with ranker = 4n(n - 1). 

Proof: The Lie algebra of SU* (2n) is given by 

~u*(2n) = { ( A B ) I A ,  B E M ( n , n ; C ) ,  T r A C i R }  
- B  A 

We express the above matrix simply as (A, B). Under this notation, we consider 
the subspace g' of su*(2n) consisting of matrices (A, B) such that a,~i = bnj = 0 

for 1 < i < n -  1, 1 < j <_ n, and ann = - R e ( a l l  + " "  + an- l ,~- l ) ,  where aij 
and b~j are the (i, j)-components of A and B, respectively. Then, we can easily 

cheek that g' is a 4n(n - 1)-dimensional subalgebra of su*(2n). Next, we define 

the element a C g~* by 

a((A, B)) = a12 + a2a + " "  + an--l,n, 

and put w = -da .  Then, as in the case of SL(n, R) [2; p. 180] (or w (2)), we 

can show that w is non-degenerate, and hence it gives a symplectic structure on 

g'. We leave detailed calculations to the readers. | 
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Remark: In the case of n = 2, the Lie algebra zu*(4) is isomorphic to o(5, 1), 

and the above subalgebra 0' corresponds to the subalgebra of 0(5, 1) constructed 

in Proposition 7. 

PROPOSITION 12: There exists a left invariant Poisson structure ~ on the Lie 

group Sp(n, R)  with rank r = n(n + 1). 

Proof: We remember that the Lie algebra of Sp(n, R) is given by 

s p ( n , R ) =  C - t A  A, B, C e M ( n , n ; R ) ,  tB  = B, tC = C . 

Using this notation, we put 

0 - t A  A is upper triangular, tB -= B . 

Then, 0' is an n(n + 1)-dimensional subalgebra of sp(n, R). Next, we define 

a E 0'* by 

o)) 
a 0 - t A  = Tr B, 

and put  w -- - d a .  Then, it is easy to check that w gives the desired symplectic 

form on 0 ~. | 

PROPOSITION 13: There exists a left invariant Poisson structure r on the Lie 

group SO*(2n) with 

1) > 2, # 4), 
rank 7r = 14 (n = 4). 

The Lie algebra 0*(8) is isomorphic to 0(6, 2), and hence from Proposition 7, 

we know that  o* (8) possesses a Poisson structure rr with rank rc = 14. 

To prove the proposition for general case, we first define four real vector spaces 



Vol. 116, 2000 LEFT INVARIANT POISSON STRUCTURES 213 

by 

} M I =  p - i  0 p e R  , 

1 - i  

{(a } M 3 =  ai bi a, b E C , 

a)la  } 
Clearly, M2 is a subspace of M3. Then, these spaces possess the following 

properties. The verification of these facts are easy. 

LEMMA 14: Assume Xi,  Y~ E Mi (i = 1 ~ 4). Then, we have 

X2Y 2 = X2Y 3 : X2Y 4 : tX3Y3 : tX3Y4 = tX4Y4 : O, 

X1Y2, X2Y1, X3ty3 -[- Y3t-X3, X4ty4 Jr- y4t-X4 C M2, 

X1Y3, X3Y1, X3Y2, X3Y2, X3Y3, X3Y3, X3tY3, X4ty4 ~ M3, 

X3tY3 --~ Y3tX3 E M3, X4tY4 : Y4tX4 C M3, 

X1Y4, X3Y4, X3Y4 E M4. 

Proof of  Proposition 13: We assume n _> 2 and n =/ 4. The Lie algebra of 

SO*(2n) is given by 

o * ( 2 n ) = { (  A B )  A C o ( n , C ) , t B - - - B C M ( n , n ; C ) }  
- B  A 

and we express the above element of o*(2n) simply as (A, B). We first consider 

the case n -- 2r. We express the matrices A and B in terms of (2,2)-blocks as 

follows: 

A . . . .  , B =  

Arl . . .  Art 

where Aij, Bij E M(2, 2; C). Clearly, we have 

Bll  "'" B l r )  

Brl . . .  B~,- 

Aji = - t A i j ,  Bji = t-Bij, l <_ i < j < r, 



214 Y. AGAOKA Isr. J. Math. 

and Aii E 0(2, C), tBii = Bii, 1 < i < r. Under these notations, we consider the 

subspace g' of o*(2n) consisting of the pair (A, B) which satisfies 

Aii �9 M1, Bii �9 M2, l < i < r, 
Aij, Bij �9 Ma, 1 < i < j <_ r. 

Then, by using the properties in Lemma 14, and the formula 

[(A, B), (C, D)] = ([A, C] - B D  + DB,  AD - DA + B C  - CB), 

we can directly check that 9' is the n(n - 1)-dimensional subalgebra of 0*(2n). 

For example, for i < j ,  we have 

[d, C]ij = ~-~(--t AkiCkj n c tCkiAkj) -t- AiiCij - CiiAij 
k<i 

+ ~ (A~kCkj - GkAkj) + A~jCjj - C~jAjj 
i<k<j 

+ + �9 M3 
j<k 

on account of the property tX3Y3 = 0 and X1Y3, XaYa, XaY1, Xaty3 �9 M3. 

Next, we define the element Ol of 1~'* by 

Ol((A, B)) = TrB,  

and put w -- -dol. Then, we can easily show that w gives the desired symplectic 

structure on 9'. 
Next, we consider the case n = 2r + 1. In this case, we express A and B as 

All  "'" AI~ Oil ) 
, , ~  

A =  A~I . . .  A ~  Ol~ , B =  

--tOll . . . .  tol r 0 

B l l  " ' "  Bi t  /~1 I 
. , .  

Brl "'" Br~ /3r ' 
t-~l "'" t-~r b 

where Old, ~ �9 M(2, 1;C), and b �9 R. Under these notations, we consider the 

subspace 9' of o*(2n) consisting of the pair (A, B) which satisfies 

A i i c M 1 ,  B i iEM2,  l < i < r ,  
Ai3, Bi3 �9 Ma, 1 _< i < j < r, 
Oli,/~i �9 M4, 1 < i < r, 
b=O. 

Then, by using Lemma 14 again, we can show that 9' is the n ( n -  1)-dimensional 

subalgebra of o*(2n). The symplectic structure on 9' can be constructed in 
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exactly the same way as in the case of n = 2r, and we leave detailed calculations 

to the readers. | 

6. The  case of  complex  simple Lie groups 

Finally, we treat  the case of complex simple Lie groups, considered as real Lie 

groups. We first prepare the following general result. 

PROPOSITION 15: Let [1 be a real Lie algebra with a left invariant symplectic 

structure. Then, the complexification b c of b considered as a real Lie algebra 

also possesses a left invariant symplectic structure. 

Proo~ By using the symplectic structure w on [, we define the R-valued skew- 

symmetric  map w I on b c by 

~' (x~  + iY1, x2  + iY2) = z ( x , ,  x2)  - z(Y~, Y2), 

for Xi, Yi E [). Then, it is easy to see that  w' is closed and non-degenerate on 

[)c, and this gives the desired symplectic form. | 

By this proposition, we know that  if a real Lie algebra g possesses a left invari- 

ant Poisson structure with rank 7r = 2k, then its complexification 9c  considered 

as a real Lie algebra admits a left invariant Poisson structure with rank r = 4k. 

Applying this proposition to each real form of complex simple Lie algebras, we 

obtain the following proposition. 

PROPOSITION 16: Classical complex simple Lie groups considered as real Lie 

groups possess a left invariant Poisson structure with the following rank: 

SL(n, c ) R :  ranklr = 2n(n - 1), 

O(2n + 1, c ) R :  rank 7r = 2n(n + 1), 

Sp(n, C)R: rankTr = 2n(n + 1), 

2n 
O(2n, C)R: ranklr  = 2(n 2 - 1) 

24 

n = even), 
(n = odd, n # 3), 
(n = 3). 

To prove this proposition, we have only to find the highest rank solutions 7r 

constructed in the previous sections for all real forms of each complex simple Lie 
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algebra. We 

z[(n, 

o ( 2 n + l ,  

5p(n, 

o(2n, 

only exhibit the list of real forms giving the highest rank solution: 

C): z[(n, R), 

C): o(n + 1, n), 

c):  p(n, R), 
0 ( n +  1 , n -  1),o(n,n) 

C): o(n+2, n - 2 ) ,  o ( n + l , n - 1 ) ,  o(n,n) 
0(3,3) 

n = even), 
(n = odd, n ~ 3), 

: 3). 

Detailed examination of this fact is easy and left to the readers. 

Thus, combining the propositions in w167 we complete 

Theorem 1. 

the proof of 

7. F inal  r emar k s  

In this final section, we state some results and comments related to left invariant 

Poisson structures. 

(1) Poisson-Lie groups. 

We say that a Lie group G with a Poisson structure { , } is a Poisson-Lie group 

if the multiplication map G • G --+ G is a Poisson map, where G x G is endowed 

with the product Poisson structure (cf. [10], [24]). In the following, we regard 

the element 7r E A2g as the 2-vector at the identity element of G, and we denote 

by ~ (resp. ~) the left invariant (resp. right invariant) 2-vector field extended 

to the whole space G by the group action. Drinfel'd [10] proved that  ~ - ~ gives 

a Poisson Lie group structure on G if and only if [~, ~]s is invariant under the 

adjoint action of G. (See also [24; p. 173].) In addition, in [18], it is shown 

that if G is connected and semi-simple, or if G is compact, then all Poisson-Lie 

group structures on G are expressed in this form ~ -  ~. In particular, from these 

results, we know that  the solutions of the CYB-equation It, u]s = 0 constructed 

in this paper give a new class of Poisson-Lie group structures on G because 

[~r, 7r]8 is clearly Ad G-invariant in this case. The 2-vector 7r c A2tt with Ad G- 

invariant [~r, 7r]s (5 0) is studied in detail and classified in [3], [7] (and [25] for 

the case g = 0(3, 1)), though there was no detailed study of the solution of the 

CYB-equation [~r, rr]s = 0 itself except some special cases, as we stated before. 

(2) Solutions of the CYB-equation for G = SL(n, R). 

At the end of the paper [2], Belavin and Drinfel'd constructed several solutions 

of the CYB-equation for the groups GL(n, C) and SL(n, C). Their construction 

is also valid in the real case, and the highest rank solutions among them are of 

rank n(n - 1) for both Lie groups. For example, in the case of g = g[(n, R), we 
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define the n ( n  - 1)-dimensional subalgebra g' by 

0 0 

and the element c~ E gl* by 

o ~ ( X )  : x 1 2  + x 2 3  --]- �9 - �9 + Xn_l ,  n 

for X = (xi j )  E gl. (Note that g~ is naturally isomorphic to the affine Lie algebra 

a ( n -  1,R).)  Then, it is easy to check that the exact 2-form -dc~ gives the 

symplectic form on 9~, and the corresponding 2-vector 7r is expressed as 

rf ~- ~ Ej i  A Ek- j+i ,k+l .  
l< i<j<k<n-1  

The n ( n -  1)-dimensional subalgebra of s[(n, R),  the symplectic form on it, and 

the 2-vector 7r for st(n, R)  can be obtained from this example by projecting them 

to ~[(n, R).  In particular, we have 

lr = ~ (Eji  - 1 /n  . 5jiI,~) A Ek- j+i ,k+l  
l< i< j<k<n-1  

for s [ (n ,R) ,  where I,~ is the identity matrix of degree n. (Similar results can 

be found in several references such as [5], [19], [20], etc. These solutions satisfy 
the equality rank 7r = dim G - rank G, and are relatively high rank solutions 

compared with other non-compact Lie groups in Theorem 1. See (5) below.) 

For both Lie groups GL(n, R) and SL(n, R),  by applying the result of Dynkin 
[11], we can prove that the examples in [2] give the maximum of rankTr among 

the solutions of the CYB-equation. We can also show that for the group SL(n, R)  

(n > 2) the solutions of the CYB-equation with rank r = n (n  - 1) are uniquely 

determined under the action of the automorphism group of s[(n, R).  For details, 

see [1]. 

The classification of the solutions for GL(2, R) is given in [17; p. 36], and we 

can further show that the solutions are essentially deformable in contrast with 

the group SL(n, R).  See also (4) below. 

(3) Maximum value of rank 7r for low dimensional Lie groups. 

At present, as for other non-compact simple real Lie groups, the maximum of 
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rank 7r is determined only in the following cases, as stated in Introduction: 

G max rank 7r maximum subalgebra 
SU(2, 1) 4 dim -- 5 
SO(3, 1) ~ SL(2, C) R 4 dim = 4 
SO(4, 1) ~ Sp(1, 1) 4 dim = 7 
SO(3, 2) ~ Sp(2, R) 6 dim = 7 
SO(5, 1) ,,~ SU*(4) 8 dim = 11 

For example, it is known that the maximum dimension of proper subalgebras of 

~u(2, 1) is 5 (cf. [22; p. 1390]). Hence, we have max rank ~r = 4 for SU(2, 1), as 

a trivial consequence of Theorem 1 and Proposition 2. In the same way, we can 

show the above result for SO(3, 2) because the maximum dimension of proper 

subalgebras of o(p,q) is equal to 1/2.  {(p + q)2 _ 3(p + q) + 4} for p + q > 3 

and p + q # 4, 6. (This fact follows immediately from the result of Dynkin [11]. 

From his result, we can show that the maximum dimension of complex proper 

subalgebras of the complex Lie algebra o(n, C) is 1/2. (n 2 - 3 n  + 4) for n _> 3 and 

n ~ 4, 6. Existence of the above dimensional real subalgebra of 0(p, q) is shown 

by taking the non-negative part of the graded Lie algebra structure of the first 

kind o(p,q) = [-1 G [0 �9 [1 (cf. [15]).) For the Lie algebras 0(3, 1) and 0(5, 1), 

we can show that  the maximum dimensions of proper subalgebras are 4 and 11, 

respectively, by classifying high dimensional subalgebras, and the above result for 

SO(3, 1) follows immediately from this fact. But for two Lie algebras 0(4, 1) and 

0(5, 1), there are several 6- and 10-dimensional subalgebras, and hence we must 

classify such dimensional subalgebras and must show that these subalgebras do 

not possess left invariant symplectic structures. 

For other remaining high dimensional Lie groups, we cannot carry out such a 

procedure any more. But, it seems to the author that the values in Theorem 1 

give the maximum of rank Ir for most Lie groups. 

(4) Algebraic sets defined by the CYB-equation. 

In terms of a basis {Xi} of g, we express the bracket operation of g by [X~, Xj] = 

ckijXk, and express 7r as ~] aijXi A Xj. Then, up to a non-zero constant, the 

Schouten bracket [It, ~r]s is equal to 

~-~(aiqajr~iij + airajpcqj + aipajqcirj)Xp A Xq A Xr E A3g, 

and hence the condition [ r , r ] s  = 0 is equivalent to [rl2,r 13] + [r12,r23] + 

[r 13,r 23] = 0 stated in Introduction. (Compare the equation in [2; p. 162].) 

Thus, in order to obtain left invariant Poisson structures on G, we have only to 

solve this system of quadratic equations, and for small dimensional Lie groups, 
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we can obtain all solutions of the CYB-equation in this way. For example, in the 

case G -- GL(2, R), we can show that the set of solutions is decomposed into a 

union of two irreducible 3-dimensional varieties (cf. [17; p. 36]), one of which is 

the 3-dimensional plane in A2gl(2, R) -~ R e consisting of 2-vectors of the form 

X A (Ell  § E22) (X C g[(2, a ) ) ,  and the other of which is the non-linear variety 

consisting of the elements 

( P  0 ) A ( 0  1 ) ( P  0 ) A ( 0  0 )  
0 q 0 0 ' 0 q 1 0 ' 

c - a  c d ' c - a  0 1 

with a 2 + bc = O. In the case of SL(2, R), the solutions constitute an irreducible 

quadratic cone in A2sl(2, R) ~- R 3 (cf. [21]), which consists of three adjoint orbits 

including the trivial one. But unfortunately, for higher dimensional Lie groups, 

we cannot solve the system of quadratic equations in an explicit form, or even 

determine whether the algebraic set defined by [Tr, 7r]s = 0 is irreducible or not. 

(5) An upper bound on rank 7r for exact symplectic structures. 

In Proposition 2, we now restrict ourselves to the "exact" symplectic structure 

on 0'. Then we have the following restricted "upper bound" on max rank It. 

PROPOSITION 17: Assume that the Lie algebra g of G is semi-simple, and a 

subalgebra O' of g admits a left invariant "exact" symplectic structure. Then, 

the inequality dim g' _< dim G - rank G holds. 

Remark: As stated in (2), the equality in this proposition holds for SL(n, R). 

(The symplectic structure constructed in [2] was exact.) But the value dim G - 

rank G does not give the actual upper bound of rank ~r for general non-compact 

Lie groups. Remember the examples in (3) above. 

To prove Proposition 17, we use the following well-known result. 

LEMMA 18: Let D be the Lie algebra of a Lie group H. Then, for a C D*, the 

exact 2-form da gives a left invariant symplectic structure on H if and only i f  

OH(a) is open in ~*, where OH(a) is the coadjoint H-orbit of a. 

For the proof of this lemma, see for example [19]. 

Proof of Proposition 17: Let w = da (a E g'*) be a symplectic structure on G', 

where G' is the Lie subgroup of G with Lie algebra g'. Then, since the dual map 

i*: g* -+ g'* of the inclusion i: g' -+ $ is surjective, there is an element/3 E g* 
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satisfying i*(fl) = a. In addition, the restriction i*: Oa,(/3) --+ Oo, (a) is also 

surjective since it is equivariant. Hence, by putting H = G' in Lemma 18, we 

have 

dimOc(/~) _> d imOa, (~)  _> d imOa, (a )  = dimG'.  

On the other hand, in the semi-simple case, we already know that the maximum 

of the dimension of the Ad G-orbit in g is dim G - rank G, and the coadjoint rep- 

resentation is equivalent to the adjoint representation. Hence, we have obtained 

the desired inequality. | 

From this proof, we know that if the equality in Proposition 17 holds, then 

there exists a subgroup G' with dimension dim G - rank G acting almost freely 

on an element of g, which is quite a strong condition on G. 

As we stated in Introduction and (3) above, concerning the value rank Ir itself, 

we do not have such an upper bound as Proposition 17 for general non-compact 

real simple Lie groups, and to obtain such an upper bound is a quite interesting 

and important  problem in considering left invariant Poisson structures. In our 

experience, there actually exist several types of even high dimensional subalgebras 

of 9 which never admit left invariant symplectic structures, and it is a profound 

mystery what makes ~' a subalgebra with (or without) left invariant symplectic 

structures. 
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